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Machine Learning
• Promise: Give me Data, I return knowledge/information/expertise

• It is the science of learning from data

• Consists of optimization + probability + many task/data specific tricks 
such as pre-processing/post-processing/visualization/etc.

• Often, a task specific, data dependent objective function is written and 
optimized
� In many problems, the learning is nothing but optimizing an objective function 

to obtain the value of unknown variables 
� Objective function to optimize is data dependent
� Values of these variables are the knowledge/information/expertise
� Will provide an example to discuss this further
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Machine	Learning	(Cont’d)
• It is also an art (like programming)

� Usually starts with staring at the data (visualizing data helps a lot)
� There is a design element
� Each application and data demand a specific treatment decided by the machine 

learning expert
� Many different tools and techniques are available. 
� For the same data/task, two different machine learning experts may take two 

different approaches
� The correct usage of each technique (from implementation to validation) needs 

knowledge and experience

• Process: have an idea, try it, learn from it, come up with a new idea, …
� There are always ways to improve: more data, better data, better learning 

algorithms, better preprocessing, etc
� Will present two case studies and their (ongoing) machine learning processes
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Machine Learning for Space Problems
• Example applications

� morphological classification of galaxies, classification of asteroids, Star/Galaxy 
classification 

� photometric redshift of galaxies (Regression)
� Anomaly detection in Space related instruments (Space Shuttle Main Propulsion 

System)
� Anomaly detection in astronomical observations (unusual single star or single galaxy, 

unusual cluster of galaxy)  

• Engineering vs Science Problems
� Engineering domain: Helps to run or maintain the space instrument better

� I will discuss the lifetime prediction of Hubble Space Telescope as an example
� Science domain: increase our knowledge of the space

� I will discuss our efforts in the automatic discovery of exo-planet using Kepler mission data.
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Sample Size Labels Domain Knowledge Relevant literature

Engineering Very small 
(extreme)

limited Complex, limited limited

Science medium…big Limited, inaccurate Limited (unknown objects) limited



Hubble Space Telescope (HST)
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• Low earth orbit space telescope, lunched 
in Apr 1990, and still in operation

• provided us with spectacular images of 
the universe and increased our 
understanding of the universe 
significantly

• Repair/upgrade/replacements have been 
done over five servicing missions in Dec 
1993, Feb 1997, Dec 1999, Mar 2002, May 
2009.

• An independent team at NASA was built 
to study the remaining useful lifetime of 
HST  (NESC)

• Most components of HST was studied 
using life-usage model or hand-coded 
physics-based prognostics

• The complexity of one component, Fine 
Guidance Sensor (FGS), made life-usage 
model or hand-coded physics based model  
infeasible



Fine Guidance Sensor (FGSs) at HST
Three FGSs exists in HST, responsible (1) to keep the telescope accurately pointed at a target, and (2) to act as a 
science instrument to measure the brightness and relative positions of stars (Astrometry).
“Hubble is the most precisely pointed machine ever devised for astronomy. The telescope must be able to maintain lock on a target for 
24 hours without deviating more than 7/1,000ths (0.007) of an arc second (2 millionths of a degree) which is about the width of a human 
hair seen at a distance of a mile.” 6

“A laser with the stability and 
precision of the Hubble, mounted 
on top of the United States Capitol 
could hold a steady beam on a dime 
suspended over the World Trade 
Center in New York, over 200 miles 
distant.” –STSCI web site

“Comparable to sinking a hole-in-
one on a Los Angeles golf course 
from a tee in Washington, DC, over 
2,000 miles away, in 19 out of 20 
attempts.” – STSCI web site



Predicting lifetime of FSGs
Contributors: Bryan Matthews, Koushik Datta, & other NESC team 
• The units were build specifically for HST and for 

the first time

• No mass production
� life usage model is not applicable

• The domain knowledge was very limited and the 
units were complex
� Hand-coded physics-based prognostics was not 

accessible

• Data driven approach is very challenging
� Extreme sample size problem
� few failed and working units

• Objective: given the collection of sensory data of the 
current and failed FGS units, build a model to 
predict the remaining lifetime of current units
� We developed two methodologies to study remaining 

lifetime/degradation of these units
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One of the three Fine Guidance Sensors 
photographed during Second Servicing 
Mission in 1997



FGS data: a close look
Each row shows one of the FSGs at HST. Red arrows shows the FGS was replaced 8
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Predicting lifetime of FSGs
• Assume: remaining-lifetime of each unit is known

� A regression problem (map the sensory data to remaining life-time values)
� Y=F(W,X), W is unknown

• Reality: Unknown remaining lifetime
� a regression problem with target values as variables to optimize
� Y=F(W,X), Y and W are unknown
� The trivial solution with all target values being zero: not interesting

• However, restrictions on the target values are available
� Known: Remaining lifetime of failed units are small near the time they failed
� Known: Remaining lifetime decrease over time (degradation increases)
� Y=F(W,X), W and some Y are unknown. Some Y are known and there are 

constraints on others
� Some sorts of semi-supervised learning (regression)
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Linear model (can be extended to non-linear using kernel trick)
• Consider this as a regression problem in which values of output are unknown but constraints on output values are provided.

• In quadratic programming form and can be solved efficiently 10

Term for failed units 
(m=1,2,3): known 

target values

Term for working 
units (m=4,5,6): 
unknown target 

values

The remaining 
lifetime at time t is 

less than that at 
time t-1



FGSs Degradation progress (remaining lifetime)
Color Code: One slot of FGS, for example blue shoes three FGS was used in slot 2 11

Pros: 
1. Easy to implement and relatively fast to run
2. Can be used to visualize the data and understand it better (jumping points, 

how constraints are satisfied)

Cons: 
1. sensitivity to the values of hyper-parameters
2. Lack of units for remaining life-time (no meaning for the values of y axis)
3. No confidence intervals



FGS data: a close look
Each row shows one of the FSGs at HST. Red arrows shows the FGS was replaced 12

Sensory data to predict 
this type of failure was not 
available



what domain experts say
A simple information from domain experts makes the problem much easier. 13

• Domain experts: A unit is considered failed if
• the value of compensated errors (the blue 

and green plots) exceeds a known threshold T 
for at least 1 in every N (known) acquisition

• Predicting compensated error à predicting 
lifetime of the units



FGS 1R A-Servo: Error prediction and probability of failure
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FGS 2R2 A-Servo: Error prediction and probability of failure
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FGS 3 A-Servo: Error prediction and probability of failure
16
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Domain knowledge can compensate 
for the small sample size



Kepler Space Telescope
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• Designed to survey a small portion 
of milky way to discover earth-size 
planets or near habitable zone

• Lunched on March 2009

• In July 2012 and then May 2013, 
two of its reaction wheels used for 
pointing the spacecraft failed
� Now it is being used for K2 extension 

mission

• More than 75% of all confirmed 
exoplanets (count:3422) are 
discovered by Kepler

• Using the knowledge gained from 
Kepler mission data
� There are as many as 40 Billion 

rocky, earth-size planet with 11 
billion of these planet orbiting sun-
like stars



Transit Photometry
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Three classes of interest

Planet Candidates (PC)
Astrophysical False Positive (AFP)
Non-Transiting Phenomena (NTP)



Kepler science processing pipeline
Pixels are downloaded once a month and transferred to the Science Operations Center (SOC), where they are calibrated, 
combined to form light curves, corrected for systematic errors introduced in the photometer, and then searched for the 
signatures of transiting planets. When a planet passes (or transits) in front of its host star, it blocks a small fraction of the 
light from that star that appears as tiny, repeating pulse or beat. By measuring the frequency of these beats and the amount 
of light blocked, we can detect the planets and calculate their size and orbital distance. 20



Classification of TCEs
Contributors: Jon Jenkins, Joe Catanzarite, Sean McCauliff
• Threshold crossing events (TCEs) are subjected to a vetting process performed by 

Kepler TCE Review Team (TCERT)

• Initial stage of vetting called triage: partitions the objects into
� (1) problematic light curves that have instrumental noise and called Non-Transiting 

Phenomena (NTP), and 
� (2) Kepler Objects of Interests (KOI). 

• KOIs are further scrutinized in later stages of vetting to be categorized to (1) 
Astrophysical False Positive (AFPs, e.g. Eclipsing Binary), and (2) Planetary 
Candidates (PC)
� Basically: KOI= PC+AFP in this categorization

• Vetting process is challenging
� Required a reviewing team of astrophysicist and astronomers 
� > 100 diagnostics metrics and associated graphics for each candidate exoplanet like signals

• Final objective:  automating the process of classifying the TCEs into three classes: 
PC, AFP, and NTP (work in progress)
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Machine Classification
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• Supervised learning

• Need a set of training cases (entities and their labels)

• Cases are usually represented by a feature vector 
extracted from a complex entity (e.g. graph or time series)

• A held-out set (test set) is used to measure how the 
learned model performs (generalization capability)

Random Forest Gradient Boosting Neural Network (Deep)SVM



Experiments on Q1-Q12
• 237 features (extracted from Q1-Q12, reduced to 216)

• 14576 objects (2879 PC, 393 AFP, and 11304 NTP), 
relatively accurately labeled
� We call this source set

• 1487 have been given dispositions by the TCERT, (389 
PC, 1098 AFP, and 0 NTP)
� We call this target set

• Early machine classification results1 (random forest): 
� When experimented on the source set, accuracy: ~99% 
� Poor result: model built from Source Set applied to Target 

set. Accuracy: 52%
� Confirmed with different other models. 
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1 S. McCauliff et al., Automatic Classification of Kepler Threshold Crossing Events, ApJ, 2014

Source (Random Forest)

TCERT vs 
Prediction

PC AFP NTP

PC 284
3

8 28

AFP 98 271 24

NTP 25 12 11267

Target (Random Forest)

TCERT vs 
Prediction

PC AFP NTP

PC 33
6

10 43

AFP 20
4

388 506

NTP

TECs

Q1-Q12Source

Target



Source Set Target Set
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Poor performance on target set?
• Source set is not representative

� Different data distributions (target vs source set)
� Different types of TCEs in source and target sets: some sorts of bias in selecting TCEs to label first by 

TCERT
� Poor features: extracted features were not good to categorize cases in the target set

• Poor Labeling
� Target set is not labeled thoroughly and only a quick disposition is provided. 
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• Or a combination of both
• We already know that labeling is a 

problem.
• How to check the distribution of 216 

dimensional data: studying the 
distance of TCEs from the decision 
boundary



Semi-Supervised Learning (SSL)

• Combines both labeled and 
unlabeled cases to obtain a better 
sense of the distribution of data

• Learn a decision boundary that
� Not only separates examples in the 

labeled set (here source set)
� But also passes through less dense 

area in the unlabeled (target) set 
(i.e. it considers the distribution of 
the data)

• Useful for our problem if 
differences in data distribution is 
a problem
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Results of SSL (Q1-Q12)
• Random Forest

� Accuracy: 0.52
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Target (SSL)

PC AFP NTP

PC 312 41 36

AFP 117 529 452

NTP

Source (SSL)

PC AF
P

NTP

PC 2778 98 3

AFP 37 353 3

NTP 6 4 11294

Target (random forest)

PC AFP NTP

PC 336 10 43

AFP 204 388 506

NTP

Source (random forest)

PC AFP NTP

PC 2843 8 28

AFP 98 271 24

NTP 25 12 11267
Better 
Models

• SSL
� Accuracy: 0.6 Part of the 

problem was 
differences in 
data 
distribution

With the 
new Q1-
Q17 data 
set, we got 
better 
insight into 
what was 
going on



Q1-Q17 Data
• Q1-Q17 data and labels (Last data 

release, No.25)

• 211 features from 17 quarters of 
observations

• Total number of TCEs: 32k
� Labeled TCEs: about 10k  
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TECs

Q1-Q17

Q1-Q12Source

Target



Experiment 1
• Same attributes as before

� Training set: Similar cases and similar 
features as before from Q1-Q12 (Dark Blue 
area)

� Test Set: A subset of target cases for which 
we now have the correct labels (Red Area)

• Results:
� Accuracy:  0.60
� Shows that labeling was a small problem
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TECs

Q1-Q17

Q1-Q12Source

Target
Test

Target
PC AFP NTP

PC 301 11 16
AFP 219 381 50
NTP 1 2 15



Experiment 2
• Same attributes as before

� Training set: Q1-Q17 features and labels in 
DR. 25 (Dark Blue area)

� Test Set: A subset of target cases for which 
we now have the correct labels (Red Area)

• Results:
� Accuracy:  0.924
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TECs

Q1-Q17

Q1-Q12Source

Target
Test

Target
PC AFP NTP

PC 300 25 3
AFP 29 761 27
NTP 1 3 14



Experiment 3
• Same attributes as before

� Training set: Q1-Q17 features and labels + 
unlabeled Q1-Q17 cases with labels 
provided from Q1-Q12 (Dark Blue area)

� Test Set: A subset of target cases for which 
we now have the correct labels (Red Area)

• Results:
� Accuracy:  0.893
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TECs

Q1-Q17

Q1-Q12Source

Target
Test

Target
PC AFP NTP

PC 296 27 5
AFP 36 731 50
NTP 1 3 14



Insights from Q1-Q17
• Labeling was a problem in both target and source set in the Q1-

Q12 data set

• The bigger problem was poor features
� More reliable feature computation from 17 quarters compared to 12 

quarters
� Also, turned out that the Kepler team learned to compute/extract features 

over time
� How about now: do we have good enough features? Probably not!!

• Future direction: automatic feature extraction + model 
construction
� Instead of relying on the extracted features, do deep learning on the 

original light curve data
� The hope is that we don’t sacrifice performance by missing some important 

features
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Summary
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• Machine Learning can be used for both space engineering and 
science problems
� each has different characteristics and demands different treatments

• Two case studies of machine learning in space research projects
� Hubble Space Telescope as an extreme small sample size shows the 

importance of using domain knowledge
� Using Kepler mission data, we show (1) how the lack of enough data can be 

compensated by utilizing the information in unlabeled data, (2) features 
might not be reliable. Better to use the original raw data if possible.

• Using examples, showed that machine learning process is not a pure 
science: needs time and resources to obtain satisfactory results.

• Visualization plays a major role in diagnostic and better 
understanding of the problem and how to proceed
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Thank you!

Hamed Valizadegan, PhD
hamed.valizadegan@nasa.gov


